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Abstract

In this paper, we present a practical reinforce-
ment learning approach simulating a driver’s be-
haviour in accepting/rejecting incoming delivery
orders. Further, we discuss shortcomings of dis-
tance based pricing strategies. We utilized Jahez
order dataset to train the agent and compare the
results with actual driver behaviour. We limit our
work to the Riyadh city orders. Our work makes
the following contribution: (1) Modelling a re-
alistic drivers’ reward function, the outcome of
which is an agent policy that simulate realistic be-
haviour. (2) We develop an environment to study
the interplay dynamics of new pricing strategies
with acceptance policies. (3) We introduce a new
pricing strategy to decrease drivers rejection rate.

1. Introduction
The journey of Jahez order starts with an order submis-
sion from the client (customer) to a Jahez business partner
through Jahez application. Once the order is approved by the
business, it goes through driver dispatching process, where
a driver is presented with an order to deliver. The driver
is shown information about the order consisting of cus-
tomer and business locations and the delivery compensation.
Based on which the driver takes the decision of accepting
or rejecting the order, if the driver accepts the order, they
are given a delivery compensation which is computed via a
pricing strategy. If the order is rejected, it is dispatched to
another driver. The iteration ends when a driver accepts the
order. Figure 1 shows a flow chart of this journey. The order
may remain in the loop for any period of time. Resulting in
an unacceptably long delay in order delivery. The goal of
this work is to minimize the time spent to assign drivers to
orders through introducing an optimal pricing strategy. The
following sections addresses this problem and proposes a
solution using a reinforcement learning approach.

Figure 1. Approved order process: after acceptance from the
branch, the order goes to the driver dispatching system in order to
find a driver to accept the order. The dispatching system cycles
through drivers until a driver accepts the order. Once a driver is
dispatched, they are given a delivery compensation

2. Background
The field of reinforcement learning has been in development
for many years. The interest has peaked after the success
of Deepmind’s AlphaGo system(Silver et al., 2016). Since
then, problems that are typically tackled by the field are
dominated by games (Brockman et al., 2016; Lanctot et al.,
2019; Nichol et al., 2018) and control tasks (Yu et al., 2019;
Tunyasuvunakool et al., 2020). Control tasks problems
made its way into the industrial applications via the robotic
arm (Jafari-Tabrizi & Gruber, 2021). A team of researchers
has developed a library (AI4finance) to train models for
trading stocks(Liu et al., 2021). In commercial applications,
dynamic pricing is an area of interest(den Boer, 2015), a
team from Alibaba created a reinforcement learning model
to dynamically price items on their e-commerce platform.
(Liu et al., 2019).

Commercial applications powered by reinforcement learn-
ing are very limited. To our knowledge, no work has been
done locally in this area. We hope that this paper starts the
inquiry of practical reinforcement learning application on
local data in unexplored sectors.
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Figure 2. The average acceptance rate of high performers falls as
the distance increases, the exact distance is omitted for privacy
purposes

3. Exploratory Data Analysis
Incoming orders to Jahez have a high variance of accep-
tance rate which result in a volatile customer experience.
preliminary analysis showed that most orders are delivered
by high performers, therefore, this work considers this sub-
set as the population of drivers. Further, the variance in
acceptance rate is attributed to multiple factors: distance,
time, branch and customer location. With distance being
the primary factor. Figure 2 shows the relationship between
acceptance rate and distance.

The dataset is comprised of orders containing the following
information:

• business location

• customer location

• business to customer distance

• datetime stamp

• delivery time

• delivery compensation

• rejection count

In our experiments, we chose the following features as the
deciding factors of the driver decision:

• branch and customer location: some location pairs
are more desirable than others

• timestamp: gives insight to rush hours and number of
orders per hour

• distance: as distance increases, drivers are less likely
to accept orders

Figure 3. clustering order longitudes and latitudes into polygons
representing zones. The zones are assigned IDs to reference them
as locations

Environment
Rn ← f1(Sn, An)

Sn+1 ∼ D(·|Sn, An)

Agent
An ← f2(Sn)

Sn, Rn

An

Figure 4. interaction between environment and agent: the environ-
ment send a state (S) to the agent, the agent respond by computing
and sending an optimal action (A) to the environment which is
used to compute the immediate reward (R) and generate the next
state.

3.1. Clustering

It is intractable to use the locations as pairs of latitude and
longitude. We therefore segment the city into multiple zones
via a clustering algorithm and consider the zones as loca-
tions of branches and customer. We used customer locations
to segment Riyadh city into multiple zones by clustering
order locations. The number of zones is arrived at to fit
business needs as well as multiple empirical iterations of
different zone sizes. Figure 3 shows a map of Riyadh zones.
The IDs of the zones are then used as proxy for the order
locations.

4. Reinforcement Learning
This section covers the reinforcement learning setting for our
application. The environment will represent orders as states,
whereas the agent will represent the driver. The environment
will produce a state (order) for the agent (driver). The agent
will reply by taking an action which the environment uses
to compute the reward and generate the next state. Figure 4
shows the relationship between the environment and agent.
The functions f1, f2 will be discussed in subsequent sections
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4.1. Environment

The environment represents the state to the agent as a vector
of the following form:

state S =


branch zone

customer zone
day
hour

distance

 =


bz
cz
D
H
d

 (1)

In addition to the listed feature. The environment keeps track
of extra features that will be used to evaluate the reward
function:

• delivery time DT

• delivery compensation dc

• timestamp T

.The environment samples a state uniformly conditioned on
the previous state as follows:

S1 ∼ U(·)
S(n+1) ∼ U(·|bz(n+1) = Anbzn + (1−An)czn,

D(n+1) = Dn,

T(n+1) > Tn + dtnAn,

T(n+1) ≤ Tn + dttAn + δtn)

(2)

Where An = 0 if the agent rejects the order and An = 1
if accepted, dtn denotes delivery time, and δt denotes the
time window to sample from. Note that dtn and δt are
known in the environment, but are not known to the agent.
Each episode represent one day, The environment keeps
generating states until the end of the episode is reached.

4.2. Agent

The agent will learn a policy to take the optimal action
for every state it receives. The optimal policy (represented
in figure 4 as f2) is achieved by maximizing the reward
function over the episode. It will be represented as a neural
network, taking a state as an input and outputting an action.

4.3. Reward function

The reward function is the primary objective for the agent
to maximize. We modelled the reward function to have
two major components: the delivery compensation and the
delivery time. It was also important to model the cost for
the agent to deliver an order. That is, the time taken to
deliver the order. we propose a measure of minute value
(mv), which is the cost of one minute of the agent’s time.
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Figure 5. minute value vs. time. the global mv value is calculated

as
∑

dc∑
dt

We further note that the minute value is sub-linear: the cost
of delivering two 10 minutes orders is higher than delivering
one 20 minutes order. The general shape of the function can
be seen in figure 5. The model to compute mv is removed
for privacy purposes.

The driver’s time cost (dtc) is calculated as

dtc = dt ·mv(dt) (3)

Finally the reward function is the difference between the
received compensation and the time cost:

reward Rn = dcn − dtcn (4)

4.4. Learning Iteration

In every step n, the environment sends a state to the agent,
the agent, then computes a forward pass of its Q network.
The action is taken to be the action that maximize the Q-
value function:

an = π(S) = argmax
a

Q(Sn, a) (5)

Where Q(S,A) represent the agent’s estimation of the Q-
value function at state S when taking action A, π denotes the
agent’s action policy. We use temporal differences(Sutton,
1988) to calculate the future reward estimation using Q. Q
is updated iteratively to reach the optimal Q∗ and policy π∗

as shown in equation (6)

Qn+1(S,A)← (1−α)Qn(S,A)+α[r+γmax
a

Qn(S
′, a)]

(6)

Where α is a learning rate, γ is the future reward discount
factor, S′ is the state reached after taking action A from
state S. This can be interpreted as the value of action A
at state S is the previous estimation plus the future values
from that state onward to the end of the episode.
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Figure 6. area and zones to sample orders from, the label denotes
the zone ID

The Q function is represented as a neural network and can
be denoted explicitly with its parameters as Q(S,A|w). The
loss function is defined as the difference between two iter-
ations of the Q-value function. With the goal to reach an
optimal Q-value at the end of training.

L(w) = E(s,a)||Qi+1(s, a|w)−Qi(s, a|w)||22
= αE(s,a)||[r + γmax

a
Qi(s

′, a|w)−Qi(s, a|w)||22
(7)

Initialized randomly, we iteratively update the network pa-
rameters w via gradient descent:

wi+1 ← wi − λ∇wL (8)

for some learning rate λ

5. Experiment Setup
In order to model real drivers, some constraints have to be
imposed to the experiment environment:

1. our work attempts to address the current behaviour of
drivers. We consider the last six months of orders for
our dataset to sample orders from.

2. drivers don’t wonder around the city, rather, they spe-
cialize in specific regions (spanning multiple zones). In
our experiment, We consider customer and business lo-
cations in the northern Riyadh region. Figure 6 shows
the region and zones considered in the experiment.

3. drivers don’t spend 24 hours a day delivering orders.
Hence, we select 12 hours, ranging from 11am to
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Figure 7. Cumulative reward vs. episode, notice the increase in
reward at first, indicating some knowledge has been gained by the
agent

11pm. This range covers both lunch and dinner rush
hours, as well as some regular hours. This is a lenient
constraint, and can be lifted with some extra considera-
tion of the agent model.

The training was carried for 4M episodes, the cumulative
reward is logged per episode. With this setup and reward
function, the agent was able to learn multiple real driver
behaviour patterns, the following section discusses our find-
ings.

6. Results
6.1. Initial results

Figure 7 shows the cumulative reward per episode. We
notice an increase of 17% in the reward at the beginning
of the training period. This is where the agent has learned
to discern differences between orders and selectively pick
orders that will maximize the overall reward. The following
subsection discusses some of the observed behaviours the
agent has learned.

6.2. Agent vs. driver comparison

6.2.1. DISTANCE PATTERN

Since the existing pricing strategy is distance based, we
notice a highly correlated pattern of acceptance between
the agent and Jahez drivers. Figure 8 shows the acceptance
rate vs. distance for both Jahez driver and the simulation
agent. The figure demonstrates that the agent learned the
compensation scheme and how to maximize the financial
reward. We also notice the acceptance of the agent in general
is higher than Jahez drivers. This maybe due to the fact that
the agent evaluates based on the order info without any
downtime whereas the driver may reject an order for other
activities irrelevant of the order such as eating, resting etc.
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Figure 8. acceptance rate vs. distance, comparison between agent
and Jahez drivers

Jahez driver acceptance rate
day regular hours rush hours

weekday 1.41 1.01
weekend 0.91 0.66

Simulation agent acceptance rate
day regular hours rush hours

weekday 1.19 0.96
weekend 1.05 0.78

Table 1. driver acceptance rate per weekday and hour categories,
the values are normalized for privacy purposes

6.2.2. TIMESTAMP PATTERN

The agent demonstrates that it learned to be more selective
in high demand times compared to low demand times just as
observed in Jahez drivers behaviour. The gap between rush
hours of weekend and regular hours of weekdays are similar
between the agent and drivers. We notice the drivers accep-
tance of rush hours in weekdays is higher than regular hours
of weekends whereas the agent selection is the opposite.
This maybe due to the fact that neither the reward function
nor the environment setup takes into consideration a cab on
number of delivered orders daily, which can be translated
into the driver capacity to work or tiresome which occurs on
weekends hence its less acceptance for actual drivers. Table
1 summarizes the acceptance rate per day and hour group.

6.2.3. OBTAINED KNOWLEDGE FROM THE
ENVIRONMENT

Figure 9 represents the acceptance rate of the agent if the
customer resides in that zone. We notice the agent learned
that in general delivering orders to rural zones such as 11
and 12 (see figure 6) is not desirable because it limits the
number of potential future orders whereas the highly pop-
ulated zones are close to each other in acceptance because

Figure 9. acceptance rate from any branch zone to customer zone.
The probability of going to a customer zone averaged over all
branch zones. i.e. P (cz)

demand and supply are more frequent. We can represent the
acceptance rate as the probability of acceptance. Figure 9
shows the following probability

P (cz) =
∑
bz

P (bz → cz|bz)P (bz) (9)

Figure 10 represents the acceptance rate of the agent if the
business location is in zone 1 and the customer resides in
each zone. We notice the agent learned that the business
is located in zone 1, then zones 4 and 7 are not desirable
because the distance is not far enough to compensate for the
time wasted in traffic whereas the zones 11 and 12 are well
compensated because of their distance and quick access due
to highway roads availability. i.e. the difference in time
between delivering to zone 4 and zone 12 is not significant,
however the compensation difference makes going the extra
distance and time more rewarding.

Figure 10. acceptance rate starting from branch zone 1 and going
to customer zone. i.e. P (cz|bz = 1)
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Figure 11. cumulative reward per episode. Comparison between
the new pricing strategy (light blue) and original pricing strategy
(dark blue)

6.3. New pricing strategy

For a pricing strategy to succeed the driver shouldn’t be
able to maximize their reward by rejecting some orders in
favor of others. Since the agent was able to behave like real
drivers in different scenarios (see figure 8) We propose a
pricing strategy that is time based rather than distance based.
The new pricing strategy can take one of many forms. For
instance, a fixed minute value can be set to compute a fixed
rate. The delivery cost will be calculated as follows:

dc = dte ·MV (10)

for fixed MV , where dte denotes an estimation of the deliv-
ery time. The strategy has been tested on the environment
to investigate whether the agent can learn to maximize their
reward by rejecting certain orders. Figure 11 shows the
reward per episode of the new and original strategy. Note
how there is an increase of 4.5% in the reward compared to
the increase of 17% with the original pricing strategy, note
the number of episodes need to converge to a policy is less
than half when compared with the previous strategy. Both
remarks indicate that the agent was not able to discern the
differences between orders with the new strategy, making
all orders indistinguishable as presented to the drivers.

7. Conclusion and Future Directions
The process of assigning drivers to orders for delivery may
take longer than acceptable by business standards. This
issue may result in potential revenue loss. The current de-
livery compensation offered to drivers made some orders
more favorable than others. In this work, we develop a
simulation of the driver as a reinforcement learning agent.
The agent has learned to exploit the distance based pricing
strategy by selectively accepting and rejecting orders. To
address this issue, a strategy is needed where the driver is
incentivized to accept all incoming orders, we propose a

new pricing strategy under which the agent is not able to
favor some orders over others. Further, our work introduces
an environment where pricing strategies can be analyzed
and assessed in a simulated environment to evaluate pric-
ing strategies with minimum room for exploitation and to
mitigate risks of multiple strategy testing experiments in the
real environment.

We considered two classes of pricing strategies: distance
based and time based strategies. However, there are multi-
ple different pricing strategies to be explored. Of particular
interest is a reactive pricing strategy: where the pricing is
dependent on the probability of rejection, which will in-
centivize orders with low likelihood of acceptance to be
accepted by drivers. Another avenue to explore is to con-
sider a hybrid approach of multiple pricing strategies.

Another future direction would be to remodel the environ-
ment to emphasize different driver behaviours. For instance,
our work concentrate on modelling high performers and
does not model all drivers, also, our work concentrate on
modelling a big city environment, where there is a high den-
sity and wide variety of orders in terms of distance, time, etc.
Changes in the environment setup will allow for modelling
segments of drivers in different cities. Further, the reward
function can be modelled to achieve different business ob-
jectives. Our work concentrate on modelling the reward
function from the driver’s financial gain perspective such
that orders are equally favorable to drivers. Other objectives
may prioritize the number of delivered orders to incentivize
drivers to cover more working hours, or prioritize the bal-
ance of supply and demand to emphasize driver availability
around the city in a multi-agent environment.
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